Given a stream of integers and a window size, calculate the moving average of all integers in the sliding window.

Implement the MovingAverage class:

  • MovingAverage(int size) Initializes the object with the size of the window size.
  • double next(int val) Returns the moving average of the last size values of the stream.

 

Example 1:

Input
["MovingAverage", "next", "next", "next", "next"]
[[3], [1], [10], [3], [5]]
Output
[null, 1.0, 5.5, 4.66667, 6.0]

Explanation
MovingAverage movingAverage = new MovingAverage(3);
movingAverage.next(1); // return 1.0 = 1 / 1
movingAverage.next(10); // return 5.5 = (1 + 10) / 2
movingAverage.next(3); // return 4.66667 = (1 + 10 + 3) / 3
movingAverage.next(5); // return 6.0 = (10 + 3 + 5) / 3

 

Constraints:

  • 1 <= size <= 1000
  • -105 <= val <= 105
  • At most 104 calls will be made to next.




 from collections import deque

class MovingAverage:

#     def __init__(self, size: int):
#         self.number = size
#         self.queue = []

#     def next(self, val: int) -> float:
#         if len(self.queue) == self.number:
#             self.queue.pop(0)
#         self.queue.append(val)
#         return sum(self.queue)/len(self.queue)
    def __init__(self, number):
        self.number = number
        self.queue = deque()


    def next(self, number):
        if len(self.queue) == self.number:
            self.queue.popleft()
        self.queue.append(number)
        return sum(self.queue)/len(self.queue)


# Your MovingAverage object will be instantiated and called as such:
# obj = MovingAverage(size)
# param_1 = obj.next(val)

Random Note


Need continuous some smaller/larger value? Use heap max or min as you need.