622. Design Circular Queue

Medium


Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".

One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.

Implementation the MyCircularQueue class:

  • MyCircularQueue(k) Initializes the object with the size of the queue to be k.
  • int Front() Gets the front item from the queue. If the queue is empty, return -1.
  • int Rear() Gets the last item from the queue. If the queue is empty, return -1.
  • boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.
  • boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.
  • boolean isEmpty() Checks whether the circular queue is empty or not.
  • boolean isFull() Checks whether the circular queue is full or not.

You must solve the problem without using the built-in queue data structure in your programming language. 

 

Example 1:

Input
["MyCircularQueue", "enQueue", "enQueue", "enQueue", "enQueue", "Rear", "isFull", "deQueue", "enQueue", "Rear"]
[[3], [1], [2], [3], [4], [], [], [], [4], []]
Output
[null, true, true, true, false, 3, true, true, true, 4]

Explanation
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
myCircularQueue.enQueue(1); // return True
myCircularQueue.enQueue(2); // return True
myCircularQueue.enQueue(3); // return True
myCircularQueue.enQueue(4); // return False
myCircularQueue.Rear();     // return 3
myCircularQueue.isFull();   // return True
myCircularQueue.deQueue();  // return True
myCircularQueue.enQueue(4); // return True
myCircularQueue.Rear();     // return 4

 

Constraints:

  • 1 <= k <= 1000
  • 0 <= value <= 1000
  • At most 3000 calls will be made to enQueue, deQueueFrontRearisEmpty, and isFull.




 class ListNode:
    def __init__(self, x, next = None):
        self.val = x
        self.next = next

class MyCircularQueue:

#     def __init__(self, size):
#         self.size = size
#         self.list_size = 0
#         self.front = None
#         self.rear = None



#     def Front(self):
#         if self.list_size == 0:
#             return -1
#         else:
#             return self.front.val

#     def Rear(self):
#         if self.list_size == 0:
#             return -1
#         else:
#             return self.rear.val


#     def enQueue(self, val):
#         if self.list_size == self.size:
#             return False
#         else:
#             node = ListNode(val)
#             if self.rear == None:
#                 self.rear = node
#                 self.front = node
#             else:
#                 self.rear.next = node
#                 self.rear = node
#             self.list_size+=1
#             return True

#     def deQueue(self):
#         if self.list_size == 0:
#             return False
#         else:
#             self.front = self.front.next
#             self.list_size -= 1
#             if self.list_size == 0:
#                 self.front, self.rear = None, None

#             return True


#     def isEmpty(self):
#         return self.list_size == 0

#     def isFull(self):
#         return self.size == self.list_size


    def __init__(self, k: int):
        self.headIndex = 0
        self.capacity = k
        self.count = 0
        self.queue = [None]*k

    def enQueue(self, value: int) -> bool:
        if self.capacity == self.count:
            return False
        else:
            self.queue[(self.headIndex + self.count) % self.capacity] = value
            self.count +=1
            return True


    def deQueue(self) -> bool:
        if self.count == 0:
            return False
        else:
            self.headIndex = (self.headIndex+1) % self.capacity
            self.count -= 1
            return True

    def Front(self) -> int:
        if self.count == 0:
            return -1
        return self.queue[self.headIndex]

    def Rear(self) -> int:
        if self.count == 0:
            return -1
        return self.queue[(self.headIndex + self.count -1 ) % self.capacity]


    def isEmpty(self) -> bool:
        return self.count == 0


    def isFull(self) -> bool:
        return self.count == self.capacity




# Your MyCircularQueue object will be instantiated and called as such:
# obj = MyCircularQueue(k)
# param_1 = obj.enQueue(value)
# param_2 = obj.deQueue()
# param_3 = obj.Front()
# param_4 = obj.Rear()
# param_5 = obj.isEmpty()
# param_6 = obj.isFull()

Random Note


Floyd's Hare and Tortoise algorithm best exaplanation video