Easy
You are given two integer arrays nums1
and nums2
, sorted in non-decreasing order, and two integers m
and n
, representing the number of elements in nums1
and nums2
respectively.
Merge nums1
and nums2
into a single array sorted in non-decreasing order.
The final sorted array should not be returned by the function, but instead be stored inside the array nums1
. To accommodate this, nums1
has a length of m + n
, where the first m
elements denote the elements that should be merged, and the last n
elements are set to 0
and should be ignored. nums2
has a length of n
.
Example 1:
Input: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3 Output: [1,2,2,3,5,6] Explanation: The arrays we are merging are [1,2,3] and [2,5,6]. The result of the merge is [1,2,2,3,5,6] with the underlined elements coming from nums1.
Example 2:
Input: nums1 = [1], m = 1, nums2 = [], n = 0 Output: [1] Explanation: The arrays we are merging are [1] and []. The result of the merge is [1].
Example 3:
Input: nums1 = [0], m = 0, nums2 = [1], n = 1 Output: [1] Explanation: The arrays we are merging are [] and [1]. The result of the merge is [1]. Note that because m = 0, there are no elements in nums1. The 0 is only there to ensure the merge result can fit in nums1.
Constraints:
nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
-109 <= nums1[i], nums2[j] <= 109
Follow up: Can you come up with an algorithm that runs in O(m + n)
time?
class Solution:
def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None:
"""
Do not return anything, modify nums1 in-place instead.
"""
if n ==0:
return
lm = len(nums1)-1
while m>0 and n>0:
if nums1[m-1]>nums2[n-1]:
nums1[lm]=nums1[m-1]
m-=1
else:
nums1[lm]=nums2[n-1]
n-=1
lm-=1
while n>0:
nums1[lm] = nums2[n-1]
lm-=1
n-=1