Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".

One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.

Implementation the MyCircularQueue class:

  • MyCircularQueue(k) Initializes the object with the size of the queue to be k.
  • int Front() Gets the front item from the queue. If the queue is empty, return -1.
  • int Rear() Gets the last item from the queue. If the queue is empty, return -1.
  • boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.
  • boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.
  • boolean isEmpty() Checks whether the circular queue is empty or not.
  • boolean isFull() Checks whether the circular queue is full or not.

You must solve the problem without using the built-in queue data structure in your programming language. 

 

Example 1:

Input
["MyCircularQueue", "enQueue", "enQueue", "enQueue", "enQueue", "Rear", "isFull", "deQueue", "enQueue", "Rear"]
[[3], [1], [2], [3], [4], [], [], [], [4], []]
Output
[null, true, true, true, false, 3, true, true, true, 4]

Explanation
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
myCircularQueue.enQueue(1); // return True
myCircularQueue.enQueue(2); // return True
myCircularQueue.enQueue(3); // return True
myCircularQueue.enQueue(4); // return False
myCircularQueue.Rear();     // return 3
myCircularQueue.isFull();   // return True
myCircularQueue.deQueue();  // return True
myCircularQueue.enQueue(4); // return True
myCircularQueue.Rear();     // return 4

 

Constraints:

  • 1 <= k <= 1000
  • 0 <= value <= 1000
  • At most 3000 calls will be made to enQueue, deQueueFrontRearisEmpty, and isFull.




 class ListNode:
    def __init__(self, x, next = None):
        self.val = x
        self.next = next

class MyCircularQueue:

    def __init__(self, size):
        self.size = size
        self.list_size = 0
        self.front = None
        self.rear = None



    def Front(self):
        if self.list_size == 0:
            return -1
        else:
            return self.front.val

    def Rear(self):
        if self.list_size == 0:
            return -1
        else:
            return self.rear.val


    def enQueue(self, val):
        if self.list_size == self.size:
            return False
        else:
            node = ListNode(val)
            if self.rear == None:
                self.rear = node
                self.front = node
            else:
                self.rear.next = node
                self.rear = node
            self.list_size+=1
            return True

    def deQueue(self):
        if self.list_size == 0:
            return False
        else:
            self.front = self.front.next
            self.list_size -= 1
            if self.list_size == 0:
                self.front, self.rear = None, None

            return True


    def isEmpty(self):
        return self.list_size == 0

    def isFull(self):
        return self.size == self.list_size



# Your MyCircularQueue object will be instantiated and called as such:
# obj = MyCircularQueue(k)
# param_1 = obj.enQueue(value)
# param_2 = obj.deQueue()
# param_3 = obj.Front()
# param_4 = obj.Rear()
# param_5 = obj.isEmpty()
# param_6 = obj.isFull()

Random Note


Substring a String

  • string[start:end:step]
  • from first string[2:6]
  • last char string[-1]
  • last char by index string[-1]
  • from last string[-5:]
  • first to last string[1:-4]