1570. Dot Product of Two Sparse Vectors

Medium


Given two sparse vectors, compute their dot product.

Implement class SparseVector:

  • SparseVector(nums) Initializes the object with the vector nums
  • dotProduct(vec) Compute the dot product between the instance of SparseVector and vec

A sparse vector is a vector that has mostly zero values, you should store the sparse vector efficiently and compute the dot product between two SparseVector.

Follow up: What if only one of the vectors is sparse?

 

Example 1:

Input: nums1 = [1,0,0,2,3], nums2 = [0,3,0,4,0]
Output: 8
Explanation: v1 = SparseVector(nums1) , v2 = SparseVector(nums2)
v1.dotProduct(v2) = 1*0 + 0*3 + 0*0 + 2*4 + 3*0 = 8

Example 2:

Input: nums1 = [0,1,0,0,0], nums2 = [0,0,0,0,2]
Output: 0
Explanation: v1 = SparseVector(nums1) , v2 = SparseVector(nums2)
v1.dotProduct(v2) = 0*0 + 1*0 + 0*0 + 0*0 + 0*2 = 0

Example 3:

Input: nums1 = [0,1,0,0,2,0,0], nums2 = [1,0,0,0,3,0,4]
Output: 6

 

Constraints:

  • n == nums1.length == nums2.length
  • 1 <= n <= 10^5
  • 0 <= nums1[i], nums2[i] <= 100




 class SparseVector:
    def __init__(self, nums: List[int]):
        #self.num1 = nums
        self.num1 = {i:val for i, val in enumerate(nums) if val != 0}

    # Return the dotProduct of two sparse vectors
    def dotProduct(self, vec: 'SparseVector') -> int:


        total = 0
        # for n1, n2 in zip(self.num1, vec.num1):
        #     total += (n1*n2)
        for k, v in self.num1.items():
            if k in vec.num1:
                total+=v*vec.num1[k]
        return total

# Your SparseVector object will be instantiated and called as such:
# v1 = SparseVector(nums1)
# v2 = SparseVector(nums2)
# ans = v1.dotProduct(v2)

Random Note


From python 3.7 dict guarantees that order will be kept as they inserted, and popitem will use LIFO order but we need FIFO type system. so we need OrderedDict which have popIten(last = T/F) for this req. One thing, next(iter(dict)) will return the first key of the dict