Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.

The overall run time complexity should be O(log (m+n)).

 

Example 1:

Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.

Example 2:

Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.

 

Constraints:

  • nums1.length == m
  • nums2.length == n
  • 0 <= m <= 1000
  • 0 <= n <= 1000
  • 1 <= m + n <= 2000
  • -106 <= nums1[i], nums2[i] <= 106




 class Solution:
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
        median = sorted(nums1 + nums2)
        if (size:=len(median))%2:
            return median[size//2]
        else:
            return (median[size//2] + median[size//2 - 1])/2

Random Note


From python 3.7 dict guarantees that order will be kept as they inserted, and popitem will use LIFO order but we need FIFO type system. so we need OrderedDict which have popIten(last = T/F) for this req. One thing, next(iter(dict)) will return the first key of the dict